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ABSTRACT
The goal of sequential recommendation is to predict the next item
that a user would like to interact with, by capturing her dynamic
historical behaviors. However, most existing sequential recommen-
dation methods do not focus on solving the long-tail item recom-
mendation problem that is caused by the imbalanced distribution
of item data. To solve this problem, we propose a novel sequen-
tial recommendation framework, named MASR (i.e., Memory Bank
Augmented Long-tail Sequential Recommendation). MASR is an
“Open-book” model that combines novel types of memory banks
and a retriever-copy network to alleviate the long-tail problem.
During inference, the designed retriever-copy network retrieves
related sequences from the training samples and copies the useful
information as a cue to improve the recommendation performance
on tail items. Two designed memory banks provide reference sam-
ples to the retriever-copy network by memorizing the historical
samples appearing in the training phase. Extensive experiments
have been performed on five real-world datasets to demonstrate
the effectiveness of the proposed MASR model. The experimen-
tal results indicate that MASR consistently outperforms baseline
methods in terms of recommendation performance on tail items.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Sequential recommendation systems exploit users’ sequential be-
havior patterns from their historical behavior data to predict the
next items they would like to interact with [27, 45, 47]. In practice,
different deep learning techniques, e.g., Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), and Graph Neural
Networks (GNN), have been applied to improve the performance of
sequential recommendation systems [19, 27, 30, 50, 53]. Although
these methods usually achieve state-of-the-art performance, the
sequential recommendation is still a very challenging task, due to
the item frequency following the long-tail distribution. Specifically,
one important statistical characteristic of users’ behavior data is
that most of the tail items only receive a little user feedback, while
users usually give lots of feedback on popular items (i.e., head items).
The long-tail training data will cause conventional models to pre-
fer recommending popular items and ignore items with little user
feedback. Thus, conventional sequential recommendation models
trained on such imbalanced user behavior data usually perform
poorly on tail items [5, 24, 41].

In the literature, various solutions have been proposed to miti-
gate the long-tail problems in machine learning tasks. For example,
some works [3, 4, 17, 25, 49] use re-sampling strategies, i.e., under-
sampling and over-sampling, to modify the data distribution. Some
other studies [6, 9, 12, 23] employ re-weighting strategies to assign
higher weights to the loss values of tail samples. In recommenda-
tion research, the long-tail recommendation problems can also be
handled by information augmentation methods, e.g., MIRec [61],
which transfers the learned knowledge from head items to improve
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the representations of tail items in model training. Moreover, there
also exist other module improvement methods. For example, [31]
incorporates the bi-lateral branch network to learn representations
and the classifier, and [5] enhances the tail item representations
with the representations of co-occurrence items.

These existing methods follow the common training and testing
strategy, called “Closed-book”. In this strategy, the training data is
used solely to learn model parameters to maximize probabilities of
ground-truth. Then, the recommendation performance is evaluated
based on the testing dataset without extra information. However,
due to the nature of learning objective functions, little knowledge
about rare samples (e.g., tail items) can be learned, and thus lead to
bad generalization performance on them.

In Natural Language Processing (NLP) research, several recent
studies [39, 63] use “Open-book” strategies to solve NLP prob-
lems. They utilize related training samples as hints in the infer-
ence stage to improve the model performance. Inspired by the
success of these methods, we propose a novel “Open-book” method,
named MASR (i.e., Memory Bank Augmented Long-tail Sequential
Recommendation) to solve the long-tail problem in sequential rec-
ommendation. MASR aggregates long-tail distribution knowledge
in the training phase via memory bank components that are then
referenced. Thus, the recommendation performance on head and
tail items can both be significantly improved.

More specifically, MASR uses a retriever-copy network to search
the top-𝐾 most relevant sequences for the given user. The retrieved
representations of sequences and their labels are used as extra hints
to enhance the recommendation performance. Compared to the
“Closed book” training strategy, the proposed MASR model can
directly refer to relevant sequences and corresponding recommen-
dation results in the whole training set. Moreover, the memory
bank provides a viable way to enable a retriever-copy network.
Vanilla memory bank [57] is a Least Recently Used (LRU) cache
that consists of pairs. Each pair contains a representation of the
item sequence and its ground-truth label. As vanilla memory banks
store recently sampled items, head items will predominate, and the
effects of tail items will be overwhelmed in the case of a long-tail
distribution. To address this issue, we design two balanced memory
banks, i.e., cluster-wise memory bank and centroid-wise memory
bank, to ensure that all items appear in the memory bank with a
balanced number of samples. With the balanced memory banks,
rare items can be memorized and retrieved effectively. In addition, a
dual channel consisting of the retriever-copy network and memory
bank is utilized to deal with the long-tail problem and ensure that
the performance of the head item is not degraded.

In this work, we have made the following contributions.

• We propose a novel recommendation framework, namely MASR,
to solve the long-tail problem in sequential recommendation.
Specifically, MASR includes a head channel and a tail channel
to improve the recommendation performance on head and tail
items, respectively.

• We design the cluster-wise and centroid-wise memory banks to
store historical training samples and ensure a balanced number
of samples among all items. The retriever-copy network is also
developed to ensure the information in historical data samples
can be effectively exploited in both tail and head channels.

• We propose a Randomly sampledMemory Contrastive Loss (Ran-
MCL) to improve the quality of tail item representations effec-
tively. RanMCL tries to reduce the variance of feature distribution
of each tail item by making features that have the same labels to
be close, while features that have different labels be far.

• To demonstrate the effectiveness of the proposed MASR model,
we perform extensive experiments on five real-world datasets.
The experimental results demonstrate that MASR outperforms
state-of-the-art baseline methods in terms of recommendation
accuracy on both head and tail items.

2 RELATEDWORK
2.1 Sequential Recommendation
With the quick development of deep learning, RNN [15, 33] and
its variants, e.g., Long short-Term Memory (LSTM) [11, 21] and
Gated Recurrent Unit (GRU) [8, 10] were applied to encode the item
sequence into a vector and then predict the next item. For exam-
ple, [20] introduced a parallel RNN architecture to model sessions
based on items and their features which are extracted from visual
information. [19] proposed a GRU-based method that introduced
session-parallel mini-batches for the session-based recommenda-
tion. Besides the RNN-based methods, CNN can also capture the
sequential dependency by treating the interaction matrix as an
“image”[53, 59]. For example, Caser [53] was proposed to capture
general preference and sequential patterns over the item sequence
by convolutional filters. Motivated by the wide application of atten-
tion mechanism [55, 60] in NLP, BERT4Rec [50] was proposed to
model user sequential behaviors by deep bidirectional self-attention.
[64] proposed a transformer-based model to reduce the noise in-
formation in the frequency domain and improve the sequential
recommendation performance. In addition, some recent works in-
troduced GNN [7, 16, 62, 66] for sequential recommendation. How-
ever, these models do not consider the long-tail item distribution,
which commonly exists in real-world datasets [61].

2.2 Long-tail Recommendation
In recommendation system research, some studies improve long-
tail recommendation with the re-balancing solution. For example,
[22] proposed a re-balancing solution to solve the long-tail problem
by producing re-sampling weights directly to select samples. [42]
proposed a Clustered Tail (CT) method, which groups tail items
using clustering methods and then recommends tail items based
on the ratings in the clusters. [48, 61] enhanced the tail item rep-
resentations by transferring knowledge from many-shot items to
few-shot items with meta-leaning. [31] adopted the bilateral branch
network to improve the diversity of recommendation. [5] allevi-
ated the long-tail problem by enhancing the item representation
with co-occurrence items. Moreover, some other works [29, 56, 58]
proposed multi-objective optimization and adversarial approach to
improving the long-tail recommendation performance. However,
none of these models are designed for sequential recommendation
tasks. [37] proposed a soft logit adjustment method, named TailNet,
based on the preference mechanism. However, the performance
improvements on tail items will hurt the performance on the head
items. Recently, [24] proposed the CITIES model that addresses the
long-tail problem by enhancing the embedding of tail items with
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Figure 1: The framework of the proposed MASR model. The yellow dash line represents the workflow of the label-based copy
mechanism, and the yellow line represents that of the feature-based copy mechanism. The subscript "h" and "t" denote the
head channel and the tail channel respectively.

context information. However, CITIES requires multi-stage training,
which introduces difficulties in deployment on real-world recom-
mender systems. [28] proposed a solution that performs 𝐾-means
clustering and relocates consumed tail items to provide pseudo
labels, which will be used to train the model and perform recom-
mendations. However, it can only recommend a cluster of target
tail items instead of an individual item. Besides, the content infor-
mation (i.e., blog article and its title) is required in [28], while our
model does not assume the existence of such auxiliary information.

2.3 Memory Bank
Memory banks can memorize the data samples that occurred in
the recent iterations and have shown power in various computer
vision tasks [14, 34, 35]. Moreover, it has also been widely used in
recommendation systems for different purposes [1, 13, 26, 36, 44].
For example, several previous works [1, 13, 36, 54] use the memory
bank to store historical data samples for long-term knowledge and
utilize the attention mechanism in the retrieval stage. MMCF [26]
proposed a deep multiplex memory network to jointly capture
fine-grained preferences and context information. MMInfoRec [44]
provided a sequential recommendation model which uses memory
to solve the sparse training signal issue. DMAN [51] employed an
external memory network to capture the long-term interests of
users. However, these models can not solve the long-tail problem.

3 THE PROPOSED MASR FRAMEWORK
Let U denote the set of users, I denote the set of items, and
𝑆 = {𝑠1, 𝑠2, · · · , 𝑠𝑚} denote the list of𝑚 items consumed by a user,
where the 𝑠𝑚 ∈ I. In general, the objective of a sequential rec-
ommendation model is to predict the next item 𝑠𝑚+1 that will be
interacted by the user at the next timestamp, given her historical
interaction sequence 𝑆 . It can be formulated as P𝑠 = (𝑦 = 𝑠𝑚+1 |𝑆),
where 𝑦 denote the label of sequence 𝑆 . In practice, users’ histori-
cal interaction data in real-world recommendation scenarios often

follow a long-tail distribution, where popular items often attract
much more user feedback than tail items. This usually leads to weak
representations of tail items and decreases the recommendation
performance on tail items. In this work, we propose the MASR
model to enhance the sequential recommendation performance on
tail items without hurting the performance on head items.

Figure 1 shows the overall structure of MASR. In summary,
MASR has the following main components.

• Sequence Encoder: The goal of the sequence encoder 𝑓𝑒 (·) is to
obtain the feature representation 𝑥 = 𝑓𝑒 (𝑆) of a given input se-
quence 𝑆 . In this work, we choose BERT4Rec [50] as the sequence
encoder, which usually achieves state-of-the-art performance
in sequential recommendation tasks. Note that other sequential
recommendation models, e.g., GRU4Rec [19], SASRec [27], and
HGN [38] can also be used as the sequence encoder.

• Head and Tail Channels: Both channels consist of a mem-
ory bank and a retriever-copy network. The only difference is
the type of memory bank involved. There are two types of bal-
anced memory banks, i.e., centroid-wise and cluster-wise mem-
ory banks. They are proposed to memorize the historical data
in the training dataset. During the inference, these two memory
banks make it efficient to use the relevant training data as refer-
ence explicitly. The retriever-copy network includes a retriever
and a copy-based predictor. The retriever module retrieves the
representations of𝐾 most similar historical sequences along with
their ground-truth labels from a memory bank. It aims to provide
external hints by searching for similar user behavior sequences.
Moreover, the copy-based predictor processes the information
retrieved from the memory bank, to predict the probabilities of
target items that are further used to enhance the model predic-
tion. In this work, we propose two different copy mechanisms: 1)
feature-based copymechanism that employs the retrieved features
to enhance the output, and 2) label-based copy mechanism that
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uses the corresponding labels of the 𝐾 most similar historical
features for prediction.

• Model Prediction: It fuses the outputs of the sequence encoder,
head channel, and tail channel to produce the final prediction
P𝑛𝑒𝑥𝑡 of interaction probabilities of candidate items.

Next, we introduce the details of the memory bank, retriever-copy
network, and model prediction.

3.1 Memory Bank
To efficiently summarize historical user behavior sequence data, we
design two balanced memory banks, i.e., centroid-wise and cluster-
wise memory banks, which are used to memorize head items and
tail items, respectively. The memory banks allow the proposed
model to search representations of related historical sequences and
their ground-truth labels from the past training iterations, even
from the entire training stage.

3.1.1 Centroid-wise Memory Bank. The main idea is to gener-
ate a representer for each item. The building and updating op-
erations are based on an extra vanilla memory bank. Specifically,
let 𝑋 = {(𝑏0, 𝑦0), (𝑏1, 𝑦1), · · · , (𝑏𝑖 , 𝑦𝑖 ), · · · , (𝑏 |𝑋 |, 𝑦 |𝑋 |)} denote a
vanilla memory bank, where 𝑏𝑖 is the feature from the sequence
encoder learned in the past iteration and 𝑦𝑖 is the correspond-
ing label. 𝑋 is updated by inserting pair (𝑏𝑖 , 𝑦𝑖 ) during training.
The size of a vanilla memory bank |𝑋 | is predefined. Then, for
each item, we maintain a running centroid (𝑚𝑖 , 𝑦𝑖 ) of the subset
𝐵 = {(𝑏 𝑗 , 𝑦 𝑗 )}𝑦 𝑗=𝑦𝑖 as follows,

𝑚𝑖 =
1
|𝐵 |

∑︁
(𝑏 𝑗 ,𝑦 𝑗 ) ∈𝐵

𝑏 𝑗

∥𝑏 𝑗 ∥
, (1)

where ∥ · ∥ means L2 normalization. However, the centroid con-
struction is sensitive to noise when 𝐵 is a small set, which is exactly
the case of tail items. To solve this problem, we also propose a
cluster-wise memory bank.

3.1.2 Cluster-wise Memory Bank. A cluster-wise memory bank is a
key-value dictionary where keys are item IDs and values are vanilla
memory banks with predetermined capacity 𝑁 . As mentioned in
Section 1, the vanilla memory bank is an LRU cache. Thus, the
data balance is assured by keeping the most recent 𝑁 records for
each item. When adding a feature and its label to the cluster-wise
memory bank, we first use the label as the key to find the corre-
sponding vanilla memory bank, and the feature is then inserted
into the vanilla memory bank.

3.2 Retriever-copy Network
3.2.1 Retriever. The retriever operates by fetching 𝐾 most similar
pairs with the feature 𝑥 from amemory bank. Let𝑀 = {(𝑚𝑖 , 𝑦𝑖 )} |𝑀 |

𝑖=1
denote the set of pairs in the memory bank. The memory bank can
be centroid-wise or cluster-wise memory bank. We can calculate
the similarity scores as follows,

𝐶 = {cos(𝑥,𝑚𝑖 )} |𝑀 |
𝑖=1 , (2)

where cos(·) denotes the cosine similarity between two feature vec-
tors. Then, we can obtain the𝐾 highest similarity scores𝐴 = {𝑎𝑖 }𝐾𝑖=1
and the corresponding pairs 𝑍 = {𝑓𝑖 , 𝑦𝑖 }𝐾𝑖=1 which are selected from
the𝑀 . Here, 𝑎𝑖 is the cosine similarity score between 𝑥 and 𝑓𝑖 .

3.2.2 Copy-based Predictor. Copy mechanism shows effectiveness
for NLP area to solve the out-of-vocabulary(OOV) issue in text
generation tasks [65]. It can directly copy the existing sub-span
to the target output from the input text. In this work, we extend
copy mechanism to the long-tail sequential recommendation by
copying the related features or labels from the retrieved candidates
to improve the recommendation accuracy, especially for tail items.
In this work, we propose the following two copy mechanisms.
• Feature-based CopyMechanism: With a similar pair (𝑓𝑖 , 𝑦𝑖 ) ∈
𝑍 , the interaction scores of candidate items 𝑃𝑖 can be computed
by a predictor layer as follows,

𝑃𝑖 = softmax(W𝑓 𝑓𝑖 + b𝑓 ), (3)

where W𝑓 ∈ R𝑑×|I | and b𝑓 are parameters, and 𝑑 is the dimen-
sion of the hidden state. The interaction scores P predicted by
the Copy-based predictor is calculated by accumulating 𝑃𝑖 as,

P =
∑︁
𝑎𝑖 ∈𝐴

𝑎𝑖𝑃𝑖 . (4)

• Label-based CopyMechanism: In this mechanism, the interac-
tion scores of candidate items are predicted based on the labels in
the similar pairs 𝑍 . For a similar pair (𝑓𝑖 , 𝑦𝑖 ) ∈ 𝑍 , we denote the
embedding of 𝑦𝑖 by 𝑙𝑖 . It is obtained by feeding 𝑦𝑖 into the item
embedding layer in the sequence encoder. Then, its probability
over all possible items 𝑃𝑖 is computed by a predictor layer,

𝑃𝑖 = softmax(W𝑙 𝑙𝑖 + b𝑙 ), (5)

where W𝑙 ∈ R𝑑×|I | and b𝑙 are parameters. Compared to the
one-hot embedding, 𝑃𝑖 contains more information about the
relevant items. The probability of Copy-based predictor P is also
calculated via Eq. 4.

3.3 Model Prediction
The output interaction scores from the tail and head channels are
denoted by P𝑡𝑎𝑖𝑙 and Pℎ𝑒𝑎𝑑 , respectively. Moreover, the output
interaction score P𝑓 𝑖𝑥𝑒𝑑 from the backbone sequence encoder is
obtained by feeding feature 𝑥 into a linear layer with softmax,

P𝑓 𝑖𝑥𝑒𝑑 = softmax(W𝑝𝑥 + b𝑝 ), (6)

where W𝑝 ∈ R𝑑×|I | and b𝑝 are parameters. The interaction score
of the next item P𝑛𝑒𝑥𝑡 is a combination of P𝑓 𝑖𝑥𝑒𝑑 ,Pℎ𝑒𝑎𝑑 , and P𝑡𝑎𝑖𝑙 .
Firstly, we obtain the weight interaction score P ′ by weight sum-
ming P𝑓 𝑖𝑥𝑒𝑑 and Pℎ𝑒𝑎𝑑 based on coefficient 𝛼 as,

P ′ = 𝛼P𝑓 𝑖𝑥𝑒𝑑 + (1 − 𝛼)Pℎ𝑒𝑎𝑑 , (7)

𝛼 = softmax(W𝑎 [𝑥 ; 𝑓 ] + b𝑎), (8)

𝑓 =
∑︁
𝑎𝑖 ∈𝐴

𝑎𝑖 𝑓𝑖 , (9)

where W𝑎 ∈ R2𝑑×1 and b𝑎 are parameters, and [·; ·] refers to
concatenation operation. Next, we consider P𝑡𝑎𝑖𝑙 and obtain the
final interaction score of the next item as follows,

P𝑛𝑒𝑥𝑡 = 𝛽P ′ + (1 − 𝛽)P𝑡𝑎𝑖𝑙 , (10)

𝛽 = softmax(W𝑏 [P ′;P𝑡𝑎𝑖𝑙 ] + b𝑏 ), (11)
whereW𝑏 ∈ R2 |I |×1 and b𝑏 are parameters . Here, we compute 𝛽
latter to enable the interaction score prediction to focus more on
the output from the tail channel P𝑡𝑎𝑖𝑙 .
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Algorithm 1: The Training Algorithm of MASR
1 Inputs: user set U, batch size 𝐵, interaction sequence 𝑆𝑢 of the

user 𝑢 ∈ U, head channel memory bank𝑀ℎ , tail channel memory
bank𝑀𝑡 , sequence encoder 𝑓𝑒 ( ·) ;

2 Sample a minibatch B = {(𝑆0, 𝑦0), ..., (𝑆𝐵, 𝑦𝐵 ) };
3 for each (𝑆, 𝑦) ∈ B do
4 Compute 𝑥 through sequence encoder according to 𝑥 = 𝑓𝑒 (𝑆) ;
5 Retrieve top-𝐾 similar pairs 𝑍ℎ , 𝑍𝑡 from the𝑀ℎ ,𝑀𝑡 with

input 𝑥 ;
6 if using label-based copy mechanism then
7 Calculate 𝑃𝑖 for head and tail channels respectively

according to Eq. 5;
8 else
9 Calculate 𝑃𝑖 for head and tail channels respectively

according to Eq. 3;
10 end
11 Calculate P for head and tail channels respectively according

to Eq. 4;
12 Calculate P𝑓 𝑖𝑥𝑒𝑑 , P𝑛𝑒𝑥𝑡 according to Eq. 6 and Eq. 10;
13 if 𝑦 is a head item then
14 Update𝑀ℎ with (𝑥 , 𝑦);
15 else
16 Update𝑀𝑡 with (𝑥 , 𝑦);
17 end
18 end
19 Calculate LRanMCL and LCE according to Eq. 12 and Eq. 13;
20 Use LCE+LRanMCL to update model parameters;

3.4 Model Training
The insufficient user feedback on tail items may cause weak rep-
resentations of tail items and degrade the retrieval accuracy. To
mitigate this issue, we propose to improve item representations by
Memory Contrastive Loss (MCL) [57] making the features for the
same items close and features from different items far away. How-
ever, MCL is not computationally efficient, due to a large number
of negative pairs. Thus, we propose a randomly sampled memory
contrastive loss, i.e.,LRanMCL, to address this issue. In theLRanMCL,
each mini-batch data share the same negative sampling to decrease
the computation. The definition of LRanMCL is as follows,

LRanMCL =
1
|B|

∑︁
(𝑥,𝑦) ∈B

[ ∑︁
(𝑚𝑖 ,𝑦𝑖 ) ∈𝑀′

max(𝑐𝑜𝑠 (𝑥,𝑚𝑖 ) − 𝜆, 0)−

∑︁
(𝑚 𝑗 ,𝑦 𝑗 ) ∈𝑀,𝑦 𝑗=𝑦

𝑐𝑜𝑠 (𝑥,𝑚 𝑗 )
]
, (12)

where B is the minibatch data, 𝑀 is the set of all pairs in the
memory bank, 𝜆 is a hyperparameter. 𝑀 ′ is a randomly sampled
subset of 𝑀 excluding items belonging to 𝑦, and the number of
samples is a hyper-parameter. LRanMCL is used on the tail channel.
The features in the memory bank are not updated during stochastic
gradient descent, only the feature 𝑥 benefits from the LRanMCL. We
also use the following cross-entropy loss to compare the predicted
interaction scores and ground-truth labels,

LCE = −
∑︁
𝑢∈U

∑︁
𝑖∈O𝑢

𝑖

log(P𝑛𝑒𝑥𝑡 ), (13)

Table 1: Statistics of the experimental datasets.

Dataset # Users # Items # Feedback Sparsity
ML-1M 6,040 3,706 1,000,209 95.53%
Musical 10,073 41,140 168,983 99.96%
Video 15,517 37,077 284,867 99.95%
Diginetica 26,018 78,586 361,150 99.98%
Yoochoose 115,639 24,105 1,812,801 99.93%

where O𝑢
𝑖
is the masked item set. During model training, we ran-

domly mask some items to make the training process more effective.
For example, assuming the original input sequence is {𝑠1, 𝑠2, 𝑠3, 𝑠4},
and the input sequence becomes {𝑠1, [𝑚𝑎𝑠𝑘], 𝑠3, [𝑚𝑎𝑠𝑘]} after the
masking operation. In this case, O𝑢

𝑖
is {𝑠2, 𝑠4}. The entire frame-

work can be effectively trained by minimizing the sum of LCE
and LRanMCL in an end-to-end manner. The details of the training
algorithm for MASR are shown in Algorithm 1.

3.5 Discussions
For the centroid-wise memory bank, the updating operations is
based on an extra vanilla memory bank 𝑋 . The time complexity of
updating vanilla memory bank 𝑋 and obtaining centroids based
on the updated feature 𝑥 ∈ R𝑑 is 𝑂 ( |𝑋 |𝑑). Because the size of the
centroid-wise memory bank is |Iℎ |𝑑 , so the time complexity for
retrieving top-𝐾 features is 𝑂 ( |Iℎ |𝑑 + |Iℎ |𝑙𝑜𝑔𝐾). The space com-
plexity is 𝑂 ( |Iℎ |𝑑 + |𝑋 |𝑑). For the cluster-wise memory bank, the
size of the memory bank is ( |I𝑡 |𝑁 ). The time complexity of mem-
ory bank updating a feature 𝑥 ∈ R𝑑 is 𝑂 (𝑑). The time complexity
for retrieving top-𝐾 features is 𝑂 ( |I𝑡 |𝑁𝑑 + |I𝑡 |𝑁𝑙𝑜𝑔𝐾). The space
complexity is 𝑂 ( |I𝑡 |𝑁𝑑).

4 EXPERIMENTS
4.1 Experimental Datasets
To evaluate the effectiveness of the proposed model, we conduct
experiments on the following datasets: MovieLens-1M1 (denoted by
ML-1M), Amazon [18], Yoochoose2, and Diginetica3. They are pop-
ular benchmark datasets used in sequential recommendation tasks.
For the Amazon dataset, the “Musical Instruments” and “Video
Games” subsets are selected for evaluation (denoted as Musical
and Video respectively). We use the recent fractions 1/4 of the Yoo-
choose datasets as [37, 52]. These datasets suffer from long-tail
and data imbalance problems, especially for the Amazon and Dig-
inetica datasets where most items have less than 10 interaction
records. We follow the prior works [27, 47, 50, 53] to perform the
data pre-processing. For ML-1M and Amazon datasets, we treat all
observed reviews or ratings as implicit feedback. For all datasets,
we build an item sequence for each user by sorting all feedback
based on the interaction timestamps. We remove users with fewer
than 5 interactions. We split the data into training, validation, and
test data using the leave-one-out method. For each user’s historical
sequence, the most recent interaction item is used for model testing,
the second recent interaction item is used for model validation, and

1https://grouplens.org/datasets/movielens/1m/
2https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
3http://cikm2016.cs.iupui.edu/cikm-cup
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Table 2: Recommendation performance achieved by different methods. The best results are in boldfaces.

All Items Head Items Tail Items

Dataset Method HR@20 N@20 HR@10 N@10 HR@20 N@20 HR@10 N@10 HR@20 N@20 HR@10 N@10

ML-1M

DMAN 0.2474 0.0995 0.1552 0.0763 0.3144 0.1263 0.1950 0.0964 0.0370 0.0126 0.0158 0.0075
BERT4Rec 0.4753 0.2260 0.3605 0.1970 0.5362 0.2584 0.4093 0.2264 0.2816 0.1182 0.2062 0.0994
BERT4Rec+FL 0.4549 0.2164 0.3415 0.1877 0.5048 0.2419 0.3823 0.2107 0.2861 0.1314 0.1996 0.1096
BERT4Rec+AFL 0.4627 0.2190 0.3480 0.1899 0.5130 0.2469 0.3902 0.2158 0.2932 0.1280 0.2022 0.1049
BERT4Rec+LG 0.4740 0.2256 0.3608 0.1970 0.5342 0.2581 0.4105 0.2269 0.2813 0.1179 0.2056 0.0989
TailNet 0.4646 0.2023 0.3300 0.1683 0.5241 0.2313 0.3758 0.1938 0.2890 0.1199 0.1949 0.0962
CITIES 0.4752 0.2258 0.3602 0.1968 0.5365 0.2583 0.4089 0.2261 0.2816 0.1183 0.2062 0.0995

MASR 0.4828 0.2381 0.3802 0.2121 0.5365 0.2676 0.4215 0.2385 0.3056 0.1422 0.2331 0.1239

Musical

DMAN 0.1988 0.0948 0.1413 0.0804 0.3303 0.1579 0.2350 0.1339 0.0018 0.0005 0.0007 0.0002
BERT4Rec 0.2301 0.1113 0.1627 0.0943 0.2978 0.1458 0.2142 0.1247 0.0195 0.0075 0.0106 0.0052
BERT4Rec+FL 0.2426 0.1184 0.1717 0.1005 0.3166 0.1555 0.2260 0.1327 0.0182 0.0059 0.0096 0.0038
BERT4Rec+AFL 0.2431 0.1187 0.1750 0.1016 0.3147 0.1551 0.2293 0.1337 0.0191 0.0068 0.0078 0.0039
BERT4Rec+LG 0.2408 0.1182 0.1733 0.1013 0.3140 0.1552 0.2267 0.1332 0.0210 0.0086 0.0110 0.0061
TailNet 0.2434 0.1202 0.1847 0.1053 0.3125 0.1543 0.2379 0.1354 0.0053 0.0018 0.0021 0.0010
CITIES 0.1577 0.0677 0.1044 0.0543 0.2042 0.0878 0.1381 0.0712 0.0072 0.0020 0.0021 0.0008

MASR 0.2518 0.1234 0.1794 0.1052 0.3241 0.1594 0.2323 0.1363 0.0259 0.0092 0.0120 0.0057

Video

DMAN 0.3160 0.1516 0.2308 0.1302 0.4365 0.2114 0.3221 0.1825 0.0620 0.0231 0.0351 0.0163
BERT4Rec 0.3749 0.1862 0.2765 0.1613 0.4722 0.2367 0.3501 0.2059 0.0871 0.0347 0.0527 0.0261
BERT4Rec+FL 0.3626 0.1830 0.2740 0.1607 0.4594 0.2337 0.3511 0.2065 0.0834 0.0361 0.0531 0.0284
BERT4Rec+AFL 0.3757 0.1880 0.2835 0.1648 0.4763 0.2402 0.3619 0.2113 0.0753 0.0308 0.0462 0.0236
BERT4Rec+LG 0.3743 0.1885 0.2794 0.1645 0.4721 0.2403 0.3565 0.2110 0.0844 0.0347 0.0505 0.0262
TailNet 0.3797 0.1870 0.2835 0.1628 0.4913 0.2461 0.3726 0.2162 0.0541 0.0209 0.0277 0.0143
CITIES 0.1431 0.0622 0.0940 0.0498 0.1769 0.0769 0.1177 0.0621 0.0335 0.0130 0.0165 0.0088

MASR 0.4060 0.2010 0.3022 0.1748 0.5090 0.2548 0.3841 0.2233 0.1076 0.0424 0.0654 0.0319

Diginetica

DMAN 0.5968 0.3885 0.5364 0.3731 0.7637 0.5193 0.7031 0.5039 0.2424 0.1159 0.1842 0.1011
BERT4Rec 0.6977 0.5494 0.6496 0.5373 0.7750 0.6200 0.7307 0.6088 0.4168 0.2876 0.3570 0.2725
BERT4Rec+FL 0.7048 0.5531 0.6570 0.5410 0.7802 0.6225 0.7362 0.6114 0.4288 0.2958 0.3631 0.2792
BERT4Rec+AFL 0.6999 0.5498 0.6502 0.5373 0.7773 0.6211 0.7318 0.6096 0.4168 0.2866 0.3543 0.2709
BERT4Rec+LG 0.7011 0.5455 0.6497 0.5325 0.7788 0.6155 0.7298 0.6031 0.4151 0.2877 0.3558 0.2728
TailNet 0.6941 0.5342 0.6477 0.5224 0.7818 0.6141 0.7405 0.6037 0.3789 0.2485 0.3198 0.2335
CITIES 0.7139 0.5649 0.6693 0.5536 0.7880 0.6347 0.7458 0.6239 0.4427 0.3079 0.3856 0.2935

MASR 0.7491 0.5911 0.7007 0.5788 0.8215 0.6617 0.7793 0.6510 0.4847 0.3296 0.4111 0.3110

Yoochoose

DMAN 0.7940 0.5496 0.7185 0.5304 0.8641 0.6143 0.7906 0.5956 0.5612 0.3349 0.4784 0.3139
BERT4Rec 0.8009 0.5876 0.7378 0.5716 0.8804 0.6504 0.8162 0.6341 0.5288 0.3728 0.4693 0.3577
BERT4Rec+FL 0.8008 0.5889 0.7372 0.5728 0.8800 0.6528 0.8163 0.6366 0.5306 0.3697 0.4668 0.3536
BERT4Rec+AFL 0.8005 0.5873 0.7369 0.5711 0.8814 0.6518 0.8178 0.6357 0.5232 0.3662 0.4609 0.3505
BERT4Rec+LG 0.8008 0.5873 0.7373 0.5712 0.8814 0.6516 0.8176 0.6353 0.5247 0.3667 0.4622 0.3508
TailNet 0.7993 0.5914 0.7373 0.5756 0.8734 0.6494 0.8100 0.6333 0.5484 0.3910 0.4893 0.3760
CITIES 0.8012 0.5880 0.7383 0.5720 0.8803 0.6505 0.8162 0.6342 0.5308 0.3743 0.4713 0.3593

MASR 0.8106 0.6098 0.7497 0.5943 0.8818 0.6690 0.8188 0.6530 0.5677 0.4069 0.5122 0.3929

the remaining items in the sequence are used for model training.
Table 1 summarizes the statistics of these experimental datasets.

4.2 Implementation Details
In this work, we use PyTorch [43] to implement all evaluated meth-
ods. The learning rate is chosen from {0.007, 0.002, 0.0007, 0.0002}
based on the performance on the validation set. The batch size
is 128. The maximum item sequence length is 50. The dimen-
sion of the hidden state 𝑑 is 256. Moreover, the number of trans-
former layers is 2. All the other hyper-parameters are set following
prior works [24, 32, 40, 46, 50, 51] and tuned based on the per-
formance on validation data. For our model, we choose the size

|𝑋 | of vanilla memory bank used in centroid-wise memory bank
from {10000, 20000, 30000, 40000, 50000}. For the cluster-wise mem-
ory bank, the size of vanilla memory bank 𝑁 for each item is se-
lected from {3, 5, 7, 9, 11}. In the retriever module, 𝐾 is chosen from
{2, 4, 6, 8, 10}. In theLRanMCL, the number of negative sample is 100
and the margin 𝜆 is 0.5. Besides, inspired by slow drift phenomena
[57], we do not utilize the memory bank before 25 epochs.

4.3 Baseline Methods
We compare MASR with existing sequential recommendation meth-
ods and various baseline methods dealing with the long-tail prob-
lem, including the re-weighting methods and multi-stage training
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Table 3: Recommendation performance achieved by MASR with different combinations of copy mechanisms.

All Items Head Items Tail Items

Dataset Method HR@20 N@20 HR@10 N@10 HR@20 N@20 HR@10 N@10 HR@20 N@20 HR@10 N@10

ML-1M

BERT4Rec+FL 0.4549 0.2164 0.3415 0.1877 0.5048 0.2419 0.3823 0.2107 0.2861 0.1314 0.1996 0.1096
MASR𝑓 𝑓 0.4828 0.2381 0.3802 0.2121 0.5365 0.2676 0.4215 0.2385 0.3056 0.1422 0.2331 0.1239
MASR𝑙 𝑓 0.4780 0.2322 0.3641 0.2035 0.5329 0.2627 0.4067 0.2310 0.2952 0.1292 0.2133 0.1085
MASR𝑓 𝑙 0.4738 0.2294 0.3668 0.2023 0.5244 0.2579 0.4127 0.2297 0.2982 0.1333 0.2123 0.1114
MASR𝑙𝑙 0.4689 0.2257 0.3582 0.1978 0.5247 0.2541 0.4021 0.2231 0.2822 0.1274 0.2042 0.1078

Musical

BERT4Rec+FL 0.2426 0.1184 0.1717 0.1005 0.3166 0.1555 0.2260 0.1327 0.0182 0.0059 0.0096 0.0038
MASR𝑓 𝑓 0.2477 0.1216 0.1786 0.1042 0.3172 0.1580 0.2304 0.1362 0.0271 0.0089 0.0139 0.0055
MASR𝑙 𝑓 0.2377 0.1167 0.1674 0.0990 0.3110 0.1529 0.2190 0.1296 0.0219 0.0075 0.0113 0.0049
MASR𝑓 𝑙 0.2518 0.1234 0.1794 0.1052 0.3241 0.1594 0.2323 0.1363 0.0259 0.0092 0.0120 0.0057
MASR𝑙𝑙 0.2431 0.1168 0.1722 0.0990 0.3174 0.1537 0.2281 0.1313 0.0191 0.0067 0.0085 0.0040

Video

BERT4Rec+FL 0.3626 0.1830 0.2740 0.1607 0.4594 0.2337 0.3511 0.2065 0.0834 0.0361 0.0531 0.0284
MASR𝑓 𝑓 0.4047 0.2025 0.3055 0.1775 0.5118 0.2580 0.3899 0.2272 0.0959 0.0411 0.0578 0.0316
MASR𝑙 𝑓 0.3940 0.1978 0.2993 0.1739 0.4957 0.2507 0.3830 0.2223 0.0973 0.0388 0.0560 0.0284
MASR𝑓 𝑙 0.4060 0.2010 0.3022 0.1748 0.5090 0.2548 0.3841 0.2233 0.1076 0.0424 0.0654 0.0319
MASR𝑙𝑙 0.4067 0.2005 0.3030 0.1744 0.5129 0.2554 0.3871 0.2237 0.0982 0.0382 0.0542 0.0272

Diginetica

BERT4Rec+FL 0.7048 0.5531 0.6570 0.5410 0.7802 0.6225 0.7362 0.6114 0.4288 0.2958 0.3631 0.2792
MASR𝑓 𝑓 0.7445 0.5859 0.6955 0.5734 0.8175 0.6581 0.7755 0.6474 0.4778 0.3204 0.4030 0.3013
MASR𝑙 𝑓 0.7406 0.5836 0.6918 0.5713 0.8154 0.6557 0.7701 0.6443 0.4638 0.3134 0.3946 0.2960
MASR𝑓 𝑙 0.7491 0.5911 0.7007 0.5788 0.8215 0.6617 0.7793 0.6510 0.4847 0.3296 0.4111 0.3110
MASR𝑙𝑙 0.7402 0.5811 0.6929 0.5691 0.8125 0.6514 0.7701 0.6406 0.4711 0.3209 0.4056 0.3043

Yoochoose

BERT4Rec+FL 0.8008 0.5889 0.7372 0.5728 0.8800 0.6528 0.8163 0.6366 0.5306 0.3697 0.4668 0.3536
MASR𝑓 𝑓 0.8106 0.6100 0.7495 0.5944 0.8817 0.6689 0.8179 0.6527 0.5679 0.4081 0.5128 0.3941
MASR𝑓 𝑙 0.8106 0.6098 0.7497 0.5943 0.8818 0.6690 0.8188 0.6530 0.5677 0.4069 0.5122 0.3929
MASR𝑙 𝑓 0.8073 0.6049 0.7451 0.5891 0.8792 0.6647 0.8148 0.6484 0.5598 0.4001 0.5043 0.3860
MASR𝑙𝑙 0.8051 0.6015 0.7418 0.5854 0.8773 0.6605 0.8115 0.6438 0.5563 0.3985 0.5000 0.3843

solutions. For a fair comparison, BERT4Rec is used for both MASR
and other baselines, except for DMAN and TailNet. We list all the
baseline models here.

• Sequential RecommendationModels: 1) BERT4Rec [50], which
employs the transformer layer to model users’ historical behav-
iors; 2) DMAN [51], which uses a dynamic memory-based atten-
tion model to capture users’ long-term behaviors.

• Re-weighting Solutions: 1) Focal Loss (FL) [32], which mit-
igates the long-tail problem by dynamically scaling loss. The
scaling factor focuses on hard examples during training and de-
creases theweight of easy examples; 2) Anti-Focal Loss (AFL) [46],
which incorporates the inductive biases of the beam search to
solve the long-tail problem in the text generation task; 3) Logit
Adjustment (LG) [40], which modifies the softmax cross-entropy
training by unifying several existing methods. 4) TailNet [37],
which designs a preference mechanism to softly adjust the rec-
ommendation scores.

• Multi-stage Training Solution: 1) CITIES [24], which uses an
embedding-inference function to replace the tail item embedding
with the multiple contextual head item embeddings.

4.4 Evaluation Metrics
We adopt the Hit Ratio@H and NDCG@H (respectively denoted
by HR@H and N@H) as the evaluation metrics, which are widely
used in the recommendation tasks. In this work, we select the H
from {10, 20}. Following [24, 50], the test process is accelerated by
pairing each ground-truth item with 𝑄 randomly-chosen negative

Table 4: Performance of MASR using different combinations
ofmemory banks onMusical dataset. Headmeans head chan-
nel, and tail means tail channel. The Centroid and Cluster
refer to centroid-wise and cluster-wise memory banks.

Head Tail All items Head items Tail items

N@20 N@10 N@20 N@10 N@20 N@10

Centroid Centroid 0.1133 0.0951 0.1474 0.1245 0.0079 0.0050
Centroid Cluster 0.1234 0.1052 0.1594 0.1363 0.0092 0.0057
Cluster Centroid 0.1135 0.0973 0.1482 0.1279 0.0079 0.0044
Cluster Cluster 0.1217 0.1048 0.1584 0.1374 0.0087 0.0049

items that the user has not interacted with. In [24, 50], 𝑄 is set
to 100. To make the experimental results more confident, we set
𝑄 = 1, 000. We use Pareto Principle[2] as the criteria to split the
head and tail items, in which 80% of user feedback is for head items
and the rest feedback is for tail items. Note that all items are used
to train the model. The reported performance for different data
splits (i.e., all items, head item, and tail item split) is obtained on
the corresponding splits of the test dataset.

4.5 Performance Comparison
Table 2 summarizes the recommendation performance of all items,
head items, and tail items on five datasets. The proposed MASR
model consistently leads to significant gains on all three splits (i.e.,
all items, head items, and tail items). Compared with the sequen-
tial recommendation methods (i.e., BERT4Rec and DMAN), MASR
achieves better performance on all three splits on five datasets. Note
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Table 5: Ablation study of MASR on the Musical dataset.

All items Head items Tail items

N@20 N@10 N@20 N@10 N@20 N@10

MASR 0.1234 0.1052 0.1594 0.1363 0.0092 0.0057
w/o tail channel 0.1215 0.1034 0.1580 0.1353 0.0067 0.0041
w/o head channel 0.1219 0.1033 0.1578 0.1346 0.0091 0.0055
w/oLRanMCL 0.1183 0.1005 0.1539 0.1319 0.0070 0.0043
w/ vanilla memory bank 0.1119 0.0947 0.1441 0.1230 0.0079 0.0045

Table 6: Performance for different size |𝑋 | of vanilla memory
bank in head channel on Musical dataset.

Metric 10000 20000 30000 40000 50000

All Items N@20 0.1234 0.1227 0.1221 0.1229 0.1096
N@10 0.1052 0.1050 0.1049 0.1047 0.0926

Head Items N@20 0.1594 0.1591 0.1586 0.1588 0.1434
N@10 0.1363 0.1366 0.1370 0.1357 0.1216

Tail Items N@20 0.0092 0.0081 0.0094 0.0090 0.0083
N@10 0.0057 0.0052 0.0055 0.0057 0.0054

that DMAN also utilizes the external memory bank but MASR out-
performs it. This indicates that the proposed cluster-wise memory
bank and retriever-copy network can benefit long-tail distribution
data. Moreover, MASR outperforms the re-weighting methods (i.e.,
FL, AFL, LG and TailNet), on all three splits. Among these methods,
AFL is worse than FL and LG on the tail items splits but achieves
comparable performance with FL. In addition, compared with the
multi-stage solution (i.e., CITIES), MASR achieves better perfor-
mance, which may indicate the benefits of one-stage end-to-end
training. Surprisingly, CITIES does not perform well on the Musical
and Video dataset. One possible reason is that the training data
size of Musical and Video is far less than the other three datasets,
which is not enough for CITIES to learn a strong representation for
each tail item. Our method utilizes a cluster-wise memory bank to
mitigate this issue and outperforms the previous solution.

4.6 Analysis of Copy Mechanisms
We investigate the performance of different combinations of copy
mechanisms. Specifically, four variants ofMASR(i.e., MASR𝑓 𝑓 , MASR𝑓 𝑙 ,
MASR𝑙 𝑓 , MASR𝑙𝑙 ) are compared. For each variant, the first sub-
script represents the type of copy mechanism in the head channel
and the second subscript represent that in the tail channel. 𝑙 refers
to the label-based copy mechanism while 𝑓 is the feature-based
copy mechanism. Table 3 summarizes the performance of MASR
with different combinations of copy mechanisms. Compared to the
state-of-the-art baseline model, MASR achieves the best results.
Even the worst-performing variant MASR𝑙𝑙 can outperform the
baseline in four datasets. For the other three variants, the perfor-
mance of MASR𝑓 𝑓 and MASR𝑓 𝑙 are better than MASR𝑙 𝑓 on three
splits. On the other hand, MASR𝑓 𝑙 achieves comparable perfor-
mance with that of MASR𝑓 𝑓 . One likely reason is that the model
can retrieve the correct ground-truth item with a high probability
by comparing the feature 𝑥 to the historical features in the memory
bank. In this case, the ground-truth item label is useful to improve
the recommendation accuracy of tail items.

Table 7: Average training time per epoch with respect to
different settings of |𝑋 | and 𝑁 .

|𝑋 | 10000 20000 30000 40000 50000

Time(s) 29.6039 29.8577 30.1803 30.0401 29.8099

𝑁 3 5 7 9 11

Time(s) 27.3025 29.4856 32.4622 34.3645 36.9988

4.7 Analysis of Memory Banks
Table 4 shows the performance of MASR, with respect to different
combinations of memory banks. As shown in Table 4, when the
tail channel utilizes the cluster-wise memory bank and the head
channel uses the centroid-wise memory bank, the overall perfor-
mance is better than other variants. This aligns with our previous
assumptions: more samples need to be retrieved from the memory
bank for a better representation of tail items.

4.8 Ablation Study
We perform ablation studies to analyze different components of our
model. The results are shown in Table 5. We can see that the full
model outperforms all variants on three splits, which indicates that
all main components contribute to the performance improvement.
The further analysis of each component is as follows,
• w/o Tail channel: In this variant, we only employ the head
channel to improve recommendation performance for head items.
The performance of the model without the tail channel is poor
on tail items, which indicates that retrieving information from
the memory bank𝑀𝑡 and copying relevant patterns benefits the
tail item recommendation performance.

• w/o Head channel: In this variant, the head channel is removed
and the tail channel remains. In this case, themodel only retrieves
similar historical features or their labels from memory bank𝑀𝑡 .
Without the head channel, the head items have more significant
performance degradation than tail items. It shows that the head
channel brings improvements for head items.

• w/o LRanMCL: In this variant, the randomly sampled memory
contrastive loss LRanMCL is removed and we only utilize the
cross-entropy loss function LCE to train the model. It is clear to
see that MASR w/o LRanMCL performs poorly. It indicates that
the LRanMCL can effectively enhance the item representation
and improve the accuracy of retrieval to improve the recommen-
dation performance.

• w/ vanilla memory bank: In this variant, the cluster-wise
memory bank in the tail channel is replaced with the vanilla
memory bank. Besides, the LRanMCL is also removed because
it is not designed for vanilla memory banks. We can observe
that the model performs poorly. One possible reason is that the
vanilla memory bank is hard to cover all unique tail items due to
the huge amount of it. The proposed cluster-wise memory bank
can mitigate this problem well.

4.9 Parameter Sensitivity Study
In this section, we study the influence of the parameters from three
aspects: memory bank in head and tail channels, and retriever.
For the memory bank part, we study how many recent historical



Memory Bank Augmented Long-tail Sequential Recommendation CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

(a) All Items (b) Head Items (c) Tail Items

Figure 2: Recommendation performance with respect to different size 𝑁 in tail channel memory bank on Musical dataset.

(a) All Items (b) Head Items (c) Tail Items

Figure 3: Recommendation performance for different number top-𝐾 of retrieved historical samples on Musical dataset.

samples should be memorized by changing the memory size. For
the retriever module, we analyze the performance when changing
the number of retrieved historical features or labels 𝐾 .

• Impacts of the vanilla memory size |𝑋 | in centroid-wise
memory bank: Table 6 shows the performance change on all
three splits according to vanilla memory size |𝑋 |. We observe that
the performance is generally decreasing on all items and head
items when the memory size increases. One possible reason is
that more noise data are included with the memory size increas-
ing, which leads to performance degradation. On tail item split,
the performance changes little when |𝑋 | changes from 10,000
to 40,000, suggesting that the head memory has little influence
on the tail item representation learning. In the experiments, we
empirically set the memory size of head items |𝑋 | to 10,000 due
to its best overall performance. Besides, we also analyzed the
effect of changing the value of |𝑋 | on the training time. As shown
in Table 7, with the change of |𝑋 |, the running time is almost
unchanged. The possible reason is the GPU parallel computing.

• Impacts of the vanilla memory size 𝑁 in cluster-wise mem-
ory bank: Figure 2 demonstrates the performance of models
with various capacity𝑁 . Among the various range of𝑁 , although
the 𝑁 = 11 achieves the best performance on all items and head
items, it almost performs poorest on the tail items. This indicates
that there is a trade-off between the performance on head items
and that on tail items. When 𝑁 = 7, the performance for tail
items outperforms all other 𝑁 values. In this work, we set the
capacity 𝑁 = 7 due to the best performance on tail items. More-
over, we also analyzed the influence of changing the value of 𝑁
on the training time. As shown in Table 7, with 𝑁 increasing,
the increase in training time is reasonable.

• Impacts of the number of retrievedhistorical features/labels:
As shown in Fig. 3, the performance on all item split and head
item split are decreasing as 𝐾 increases. When 𝐾 is selected from
{4, 6, 10}, the model achieves comparable performance for tail
items. In the experiments, we empirically set 𝐾 to 4.

5 CONCLUSION
In this paper, we propose a novel sequential recommendationmodel,
namely MASR (i.e., Memory Bank Augmented Long-tail Sequential
Recommendation), to improve sequential recommendation per-
formance on tail items. Specifically, we propose a centroid-wise
memory bank and a cluster-wise memory bank to store historical
data samples. Moreover, the retriever-copy network is designed to
search similar sequences and copy relevant information to enhance
the recommendation performance for head items and tail items. In
addition, we propose randomly sampled memory contrastive loss
to enhance the representation quality of the tail items. We validate
our method on five real-world datasets and the experimental re-
sults demonstrate that MASR outperforms state-of-the-art baseline
methods.
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