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Abstract—Machine learning (ML) models have been widely
used to improve the accuracy and efficiency of various types of
disease diagnostic tasks. However, it is still challenging to apply
ML models to perform diabetes-related prediction tasks mainly
because patients’ health records are sparse and have a vast
amount of missing values. Missing values often break the diabetes
prediction pipelines, posing challenges to existing approaches.
Such problem deteriorates significantly when critical attribute
values (e.g., blood test results on HbA1c, FPG and OGTT2hr)
are missing. In this paper, we introduce a large-scale diabetes-
related dataset named Chronic Disease Management System
(CDMS) dataset, which collects the clinical records of more than
700,000 visits of over 65,000 patients across eight years. CDMS
is anonymously collected and has a high percentage of missing
values on several critical attributes for diabetes prediction. If
not being dealt with carefully, the missing values will cause
significant performance degradation of the applied ML models.
In this paper, we also investigate the effectiveness of multiple data
imputation methods through conducting extensive experiments
using CDMS. Experimental results show that k-Nearest Neighbor
Imputation (KNNI) performs better than other methods in this
diabetes prediction task. Specifically, with KNNI applied, the
diabetes prediction accuracy and precision are both over 0.8
using various ML predictive models.

Index Terms—diabetes-related dataset, diabetes prediction,
missing values, data imputation techniques

I. INTRODUCTION

Early identification and intervention of chronic diseases are
deemed as critical tasks in reducing burdens of healthcare
systems for both individuals and the society. Diabetes mellitus
(DM) is one of the most prevalent and challenging chronic
diseases, which is imperceptible in its early stage, but leads to
severe morbidities from complications if not being well taken
care of. According to [1], the number of global diabetes pa-
tients is projected to increase from 380 million in 2013 to 590
million by 2035. Patients with diabetes have a higher risk for
complications. Such morbidities of diabetes result in substan-
tial societal and economic burdens [2]. To better facilitate the
early detection and prevention of DM, various evidence-based
and patient-centric approaches have been adopted by clinicians
to care for patients across a continuum of patients’ lives [3]. In
addition, the DM problem can be modeled as a classification
problem with the goal being predicting the clinical outcomes

of the DM, e.g., {healthy, pre-diabetes, diabetes}. With the
emergence of artificial intelligence, various ML models have
been leveraged to provide timely prediction on the occurrence
of pre-diabetes, diabetes and comorbidities [2].

Despite the popularity of ML models, the prediction of
clinical outcomes calls for extra caution when models make
automated decisions on health-related tasks [4]. Different from
applications such as image classification on handwritten digits,
the incorrect prediction of DM can lead to much severe
consequences. Specifically, if a person with pre-DM or DM is
not identified promptly, we may miss the critical time window
for early interventions. Another important limiting factor that
requires extra caution is the high prevalence of missing values
in real-world DM-related datasets. This is caused by the fact
that a patient’s data may be collected at irregular time intervals
with different subsets of health records at different time points.
In addition, different patients typically have different numbers
of health records, which correspond to different number of
visits to hospitals. All these real-world medical data issues
pose a big challenge to ML models because standard ML
models require input data of high integrity with a fixed number
of dimensionality.

Rather than removing the data entries having missing val-
ues, data imputation techniques may increase data quality
by replacing missing values by appropriate imputed values.
Mean imputation replaces missing values of a certain variable
with the mean value of this variable, which is easy to put
into practice [5]. However, one defect of this method is
the ignorance of population variance. Hot-deck imputation
technique groups instances based on several variables, then
substitutes the missing values with mean values within each
group. For instance, for the k-Nearest Neighbor Imputation
(KNNI) approach, each group corresponds to k number of
nearest neighbours. Recently, discriminative and generative
deep learning (DL) imputation methods [6], [7] have been
proposed as well.

Note that there is no perfect imputation strategy for all
real-world datasets. Hence, it requires dedicated analysis and
experiments to determine the most appropriate data imputation
technique. In this paper, we aim to investigate the data im-



putation strategies using a large-scale medical dataset named
Chronic Disease Management System (CDMS) dataset. The
CDMS dataset comprises 1,486,746 health records of chronic
disease patients who visited five polyclinics being operated
by the National Healthcare Group in Singapore from 2010 to
2017. Each health record corresponds to a patient’s visit to
the polyclinic. Note that the CDMS dataset used in this paper
only comprises the health records of diabetes-related patients
being archived in the much more comprehensive, continuously
updated data repository manged by the National Healthcare
Group, Singapore [3].

Other than introducing the CDMS dataset, we also aim to
study how to properly conduct analysis on diabetes-related
data using ML models. In particular, we observe that the
vast amount of missing values in CDMS cannot be ignored,
otherwise, it would significantly affect the performance of the
downstream ML models. Therefore, we focus on the problem
of having a large proportion of missing values in DM-related
records, and the investigation on how different data imputation
approaches affect the final model performance. In addition, we
also conduct multi-facet investigations related to the missing
values, such as preprocessing procedures, outlier detection,
etc. After imputing missing values, we apply seven ML and
DL models for diabetes prediction. Empirical results indicate
that KNNI outperforms the other imputation methods on the
diabetes prediction task.

The contributions of our paper are summarized as follows:
(i) Based on CDMS, a large-scale diabetes-related dataset
collected in Singapore from 2010 to 2017, which covers
multiple ethnic groups, , we introduce the demographic com-
position of the diabetes cohort in Singapore. (ii) We thoroughly
analyse the data preprocessing procedure, especially the data
imputation methods, to handle missing values using CDMS.
(iii) We conduct extensive experiments on the imputed dataset
using multiple ML predictive models for diabetes prediction.

The rest of the paper is organized as follows. Related
work of diabetes prediction and data imputation methods are
presented in Section II. The details of the CDMS dataset is
introduced in Section III. Experimental results and discussions
are delineated in Section IV. Finally, conclusion and future
work are reported in Section V.

II. RELATED WORK

In this section, we review related prior studies on diabetes
datasets, machine learning algorithms used for diabetes pre-
diction, and relevant missing value imputation methods.

A. Diabetes Prediction

The rapidly increasing number of diabetes cases has posed
a huge and imminently growing burden on healthcare systems
in many countries. Early detection of diabetes is critical to pre-
vent the patients from developing other chronic diseases and
serious complications. In this attempt, governments, hospitals
and healthcare providers have put much effort in providing
anonymous clinical datasets for diabetes-related research. The
commonly used Pima Indians Diabetes dataset [8] comprises

TABLE I
COMPARISONS OF DIABETES DATASETS

Dataset # patients Time span (year) # input variables
Pima 768 1965-1970 8
JHS 3,340 2000-2004 20

CCAE 13,050 2011-2015 21
CDMS (Ours) 65,259 2010-2017 20

768 records of females who are at least 21 years old. Each
record has eight independent medical indicators, such as
glucose, blood pressure (BP) and Body Mass Index (BMI),
and one outcome indicating whether the patient has diabetes
or not. The Jackson Heart Study (JHS) dataset comprises
3,340 participants’ health records obtained from interviews
during clinic visits including demographics, socioeconomic
status, lifestyle data, medication use, and other sociocultural
parameters from 2000 to 2004, which were collected to predict
Type-2 diabetes [9]. The MarketScan Commercial Claims
and Encounter (CCAE) dataset, produced by IBM Watson
Health, comprises records of 13,050 Type-2 diabetes patients
between 19 and 64 years old from 2011 to 2015. The records
cover patients’ demographics and medications for predicting
twelve kinds of complications after the onset of diabetes [10].
In this paper, we collect a large-scale anonymous diabetes-
related dataset named CDMS in Singapore from 2010 to
2017. As shown in Table I, our CDMS dataset is much
larger than the existing datasets. Additionally, comparing to the
afore-reviewed datasets, CDMS covers multiple ethnic groups,
including Chinese, Malay, Indian, Eurasian, Caucasian and
other ethnicities, due to the multiracial nature of Singapore.

In the attempt to accurately predict diabetes, numerous ML
algorithms and data mining techniques have been exploited.
Support vector machines (SVM), K-means clustering and
decision tree algorithms are among the most widely used
methods on the Pima dataset, with SVM being the most
competent algorithm for this binary classification problem
[11]. Logistic Regression and Random Forest are shown to
be effective on the JHS dataset [12]. For the CCAE dataset,
the survival analysis approach was adopted to model the
longitudinal observations for diabetic complication prediction
[10]. However, the insights conveyed by these research results
may be limited due to the datasets’ constraints, such as small
sample sizes, high data density and few predictive indicators
in the medical domain. The potential challenges of using huge
datasets comprising millions of health records to build a data-
driven diabetes predictive model are rarely discussed in details
in the literature. In this paper, we mainly study the missing
value imputation problem on our collected large-scale dataset.

B. Missing Value Imputation Methods

The presence of missing values is prevalent in the medi-
cal domains [13]. The loss of information in data samples,
especially, the lack of potential predictive indicators, can be
detrimental to the performance of predictive models. While
discarding data samples with missing values may lead to



inferior results due to the elimination of representative in-
formation, Missing Value Imputation (MVI) methods may
preserve all the data samples by substituting the missing values
with estimated values based on other available information.
MVI methods can be categorized into single imputation and
multiple imputation methods based on whether the imputed
values are treated as stationary or not [14]. The latter in the
literature mostly assumes data missing-at-random.

Mean Imputation (MI) is a popular single imputation ap-
proach in which the missing values of one attribute or pre-
dictive variable are replaced by the mean of other observed
values for this variable [5]. However, if a variable varies a
lot from patient to patient, MI introduces bias to the model
due to the ignorance of large population variance. In con-
trast, the k-Nearest Neighbours Imputation (KNNI) approach
only considers similar data samples characterized by other
available attributes [15], and ignores dissimilar samples that
may introduce bias. Multiple imputation methods, on the other
hand, treat the missing values of an attribute as a dependent
variable and it can be iteratively updated throughout the
analysis process. Multiple Imputation by Chained Equations
(MICE) is one such approach where the imputed values are
drawn from a distribution multiple times and determined via
statistical analysis iteratively until convergence [16]. Imputing
data multiple times may produce more robust values than
single imputation methods do. However, when the dataset
is large in size and the data features are complex, due to
non-linearity and high dimensionality, as is the case with our
CDMS dataset, MICE incurs heavy computation and thus is
difficult to apply. More recent approaches use deep learning
for multiple imputation [17]. Models such as autoencoders
have shown better predictive performance than MICE on
heterogeneous data [6], [7]. In this paper, we extensively
explore the popular MVI methods, aiming to show the benefit
of handling missing values in diabetes predictive models.

III. USING CDMS FOR DIABETES PREDICTION

In this section, we introduce the details of the collected
large-scale diabetes-related dataset. In addition, we present
the details of the data preprocessing steps, data imputation
methods and predictive models used in this research work.

A. Chronic Disease Management System (CDMS) Dataset

Health records of the following patients who visited the
polyclinics managed by the National Healthcare Group, Sin-
gapore, and were diagnosed with pre-DM or DM and also di-
agnosed with hypertension or dyslipidemia from 2010 to 2017
are collected in CDMS. All together, there are 225,051 patients
and 9,258,902 clinic visit records in the initially extracted
CDMS dataset. Relevant ethic approval (NHG DSRB Ref:
2020/00714) has been obtained to conduct relevant research
activities and all the personal identifiable information has been
removed when extracting the dataset.

CDMS includes clinic visit records, personal health data,
laboratory test results, medical diagnoses, pharmacy records,
complications, and other peripheral information of patients

Fig. 1. Age distribution of the diabetes cohort in CDMS.

with hypertension, dyslipidaemia or DM. Because our point-
of-interest is the prediction and diagnosis of DM, we further
extract relevant records of only the pre-DM and DM patients
from the initial CDMS dataset to collect DM-related data (see
first three rows in Table II). As a result, the extracted dataset
comprises a total number of 713,968 health records of 65,259
patients who were either diagnosed with pre-DM or DM. Note
that we exclude all data samples of Type-1 diabetes patients.

Variables in CDMS include demographics (age, gender
and ethnic group, etc.), physical examination records (weight,
BMI, blood pressure, etc.), laboratory test records (glycated
hemoglobin test, lipoprotein cholesterol test, glucose tolerance
test, etc.), DM-related comorbidities and complications, diag-
nostic descriptions, etc. In general, there are three types of
medical data: numerical data (age, weight, blood pressure,
count of visits, etc.), categorical data (disease type, ethnic
group, smoking status, etc.), and descriptive data (diagnostic
descriptions in natural language) [18]. In this research work,
we mainly use a subset of the numerical and categorical
variables in CDMS that are closely related to our diabetes
prediction study (see Table IV).

B. Demographic Characteristics od CDMS

In this subsection, we analyse the demographic character-
istics of pre-DM and DM patients in CDMS. In CDMS, the
patients are from six ethnic groups, namely Chinese, Malay,
Indian, Eurasian, Caucasian and Others, where Others refer
to all the other ethnicities apart from the first five.

To better understand the demographic characteristics of the
diabetes cohort, we divide the patients into the following four
categories: (i) pre-DM only (patients with diagnostic records
of only pre-DM), (ii) pre-DM to DM (patients with diagnostic
records of both pre-DM and DM), (iii) DM only (patients with
diagnostic records of only DM), and (iv) non DM (patients
without any DM-related diagnostic record). It is worth men-
tioning that a patient is classified as DM only because this
patient has no diagnostic records of pre-DM in the dataset,
which does not mean this patient was diagnosed with DM
without having pre-DM first. We take the records of pre-
DM only and pre-DM to DM patients to support diabetes
prediction. As shown in Fig. 1, the age of the extracted



TABLE II
ETHNICITY AND GENDER DISTRIBUTION OF DIFFERENT CATEGORIES

Ethnicity Gender TotalChinese Malay Indian Eurasian Caucasian Others Female Male

pre-DM only 10,984 1,172 1,036 42 4 538 7,132 6,644 13,776
pre-DM to DM 6,001 827 755 20 1 344 4,262 3,686 7,948

DM only 29,325 6,067 5,669 150 10 2,314 20,839 22,696 43,535
non DM 121,926 15,429 14,509 629 73 7,226 84,608 75,184 159,792

TABLE III
GENDER DISTRIBUTION BY ETHNICITY

Chinese Malay Indian

Gender Female 87,257 12,686 10,974
Male 80,979 10,809 10,995

diabetes cohort ranges from 14 to 116 while most of patients
fall in the range of 50∼80.

Furthermore, we analyse the demographic composition of
the diabetes cohort by gender and ethnicity. As shown in
Table II, four patient categories have roughly the same ethnic
and gender distribution. Ethnic distribution shows the highest
proportion of Chinese (around 80%) while Malay and Indian
account for about 8∼10%, respectively. Eurasian, Caucasian
and other ethnicities make up the rest population in CDMS.
Although there is a slightly higher proportion of female than
that of male, the gender distribution is overall balanced.
The ratio among various ethnic groups having either pre-DM
or DM shown in Table II is similar to the ethnic groups’
composition in Singapore. Therefore, we do not select patients
from any specific ethnic group(s) but use all of their data
for experiments because CDMS is a national-wide unbiased
dataset.

Due to the fact that the ethnic groups of Chinese, Indian and
Malay take up over 95% of all the data samples, we further
analyse the statistics within these ethnicities. The gender
distribution of these three ethnicities are shown in Table III.
Female and male are almost evenly distributed across the three
ethnicities in each category.

C. Data Preprocessing

Data preprocessing plays a critical role in the overall
prediction pipeline because the quality of the data greatly
affects the prediction performance. To apply a ML or DL
model for diabetes prediction, we take the records of pre-
DM only and pre-DM to DM patients (167,503 records from
21,724 patients in total). Then, we make the following efforts
to preprocess the dataset.

1) Predictor Variables: We analyze the medical implica-
tions of each attribute and its relevance to DM. In this study,
we identify 21 attributes (see Table IV) based on both the sug-
gestions of clinicians and literature review. The 21st attribute
(i.e., Disease Type: {pre-DM, DM}) is taken as the label of
each data sample, therefore, a binary classification task can be
conducted using this dataset. However, relevant lab tests and

physical examinations may be carried out on a date different
from the diagnosis date. To ensure the validity of the extracted
data samples, laboratory tests and physical examinations are
considered to be valid only if they were performed close to
the diagnosis date. Specifically, we only take laboratory tests
and physical examination results when they were performed
within a certain period of time before/after the diagnosis date.
For example, a patient was diagnosed with DM on 1st May
2015, but the OGTT2hr test result was missing on that date.
Because the validity period of OGTT2hr is set as “0∼30 days
before/after diagnosis date”, then the most recent OGTT2hr
test result between 1st April 2015 and 31st May 2015 is used
for this data sample. More details on how the data samples are
extracted based on the closest timing are presented in Table IV.

2) Removal of Outliers: It is inevitable that there are
errors and inaccuracies in the records due to manual mis-
takes, machine failures or even database crashes. According
to clinicians’ guidance, we remove records which are obvi-
ously unrealistic, such as inappropriate negative values and
values exceeding the reasonable range. The reasonable value
restriction ranges are presented in Table IV. Besides, there are
unexplained records in the dataset. For instance, “Unknown”
was recorded in the field Ethnicity. Nonetheless, CDMS only
has 21 unreasonable records and 497 unexplained records
among the total number of 0.17 million selected records. Thus,
we deem removing these 518 records has no discernible impact
on the quality of the overall dataset. After the removal of
unreasonable and unexplained records, the number of records
in CDMS becomes 166,985, which is sufficient for training
and testing predictive models.

3) One-hot Encoding: For categorical attributes in CDMS,
we apply one-hot encoding on them. One-hot encoding is
capable of converting categorical data, especially those having
no ranking orders associated with the values, into numerical
inputs that can be readily used by machine learning algorithms.
For instance, with six categories of Ethnicity in CDMS, we
correspondingly obtain six binary variables for each record
after applying one-hot encoding. Among these six variables,
one and only one of them has the value of 1 with the others
set to 0, indicating the respective ethnicity.

4) Missing Value Imputation: Missing values (MVs) are
prevalent in most real-world datasets, which could lead to
increase in errors for algorithms requiring a large number of
indicators [18], [19]. In our study, the setting of the validity
period (see Table IV) does not alleviate the critical MV issue.
As mentioned in Section III-C1, in our study, not all laboratory



TABLE IV
ATTRIBUTES IN THE CDMS DATASET

Index Attributes Descriptions Range Period of validity

1 Gender female, male - -
2 Age age in months when the disease is confirmed - -
3 Race Chinese, Malay, Indian, Eurasian, Caucasian, Others - -
4 Weight weight in kilograms (, 300] 0∼30 days before/after diagnosis date
5 BMI Body Mass Index in kg/m2 [5, 150] 0∼30 days before/after diagnosis date
6 OGTT2hr 2 hour oral glucose tolerance test value in mmol/L [1, 40] 0∼30 days before/after diagnosis date
7 FPG Fasting Plasma Glucose value in mmol/L [1, 40] 0∼30 days before/after diagnosis date
8 HbA1c glycated hemoglobin test value in % [3, 20] 0∼30 days before/after diagnosis date
9 LDLc low-density lipoprotein cholesterol test value in mmol/L [0.1, 10] 0∼30 days before/after diagnosis date
10 HDLc high-density lipoprotein cholesterol test value in mmol/L [0.1, 10] 0∼30 days before/after diagnosis date
11 TG triglycerides test value in mmol/L [0.1, 30] 0∼30 days before/after diagnosis date
12 TC total cholesterol test value in mmol/L [0.1, 30] 0∼30 days before/after diagnosis date
13 Smoking Status non-smoker, ex-smoker, smoker - 0∼6 months before/after diagnosis date
14 SBP systolic blood pressure in mmHG [50, 300] 0∼30 days before/after diagnosis date
15 DBP diastolic blood pressure in mmHG [30, 300] 0∼30 days before/after diagnosis date
16 Hypertension yes if one diagnosed with hypertension, otherwise no - before diagnosis date
17 Dyslipidaemia yes if one diagnosed with dyslipidaemia, otherwise no - before diagnosis date
18 Surgical procedure yes if one has surgical in the past one year, otherwise no - 0∼1 year before diagnosis date
19 No of complications number of complications - before diagnosis date
20 Counts of visits counts of recent visits to the hospital - the same calendar year
21 Disease Type pre-DM, DM - -

tests and physical examinations are considered as valid records
to ensure data quality. As a consequence, data samples are
fairly sparse in our dataset.

Accurate prediction in the presence of large number of MVs
in the dataset has always been a challenging problem [20].
Most hybrid models address this challenge by either removing
missing data instances from the dataset (often referred to as
case deletion) or using data imputation methods to fill in
the MVs with certain values. For the purpose of analyzing
the influence of various MV imputation methods, we conduct
extensive experiments to identify the most appropriate MV
imputation method to better handle our dataset. The evaluated
MV imputation methods in this study are listed as follows:

• Case Deletion: Data samples containing any MVs in the
attributes are removed from the dataset.

• Zero Imputation (ZI): This method inserts zeroes to MVs.
Many studies have experimentally confirmed that zero
imputation leads to sub-optimal performances on the
prediction tasks [21].

• Concept Most Common (CMC): Based on the Most
Common (MC) method which replaces numerical MVs
with the mean values and replaces categorical MVs with
the most common categories, CMC is similar to the MC
method for computing MVs, but it only considers missing
instances in the same category.

• k-Nearest Neighbor Imputation (KNNI): This method
finds the k nearest neighbors of the current data instance
having MVs, and then fills in MVs with the average
value for the numerical attributes, and the most common
value among all the nearest neighbors for the categorical
attributes. The nearest neighbors are identified using a
predefined distance metric, which is also referred to as the
dissimilarity metric. The most commonly used distance

metrics are Euclidean and Manhattan distances. Given
two data instances xi, xj ∈ RM where M denotes the
number of feature dimensions, the weighted Euclidean
and Manhattan distances are defined as follows:

dEuclidean(xi, xj) =

√∑M

p=1
wp(xi,p − xj,p)2, (1)

dManhattan(xi, xj) =
∑M

p=1
wp |xi,p − xj,p| , (2)

where wp denotes the weight of the pth feature. Uniform
weights are used in our experiments, i.e., the weights of
all the M features are equal.

• Multivariate Imputation by Chained Equation (MICE):
This method works by repeatedly filling in MVs. Multiple
Imputations (MIs), as opposed to Single Imputations
(SIs), are far superior because it takes the statistical
uncertainty in the imputations into consideration. This
method is quite adaptable, and works well with both
numerical and categorical variables [22].

• DataWig: It is a robust and scalable method that uses
deep neural networks to impute MVs in the dataset.
This method can handle both numerical and categorical
variables [6].

5) Data Splitting and Standardization: We split the dataset
into training/testing sets with the 80%/20% ratio. Then we
apply zero-mean, unit-variance standardization (w.r.t the train-
ing set) on the input features before feeding them into the
predictive models.

D. Machine Learning Models for Diabetes Prediction

In this research work, we apply seven ML/DL models for
diabetes prediction, which are listed as follows:



1) Logistic Regression (LR): This classification algorithm
trains a statistical model using a logistic function to model
a binary dependent variable. Although being simple in its
dynamics, LR is widely adopted because it is interpretable
and often achieves robust and competitive performance in real-
world applications [23].

2) Decision Tree (DT): A DT is a flowchart-like structure
in which each node represents a “test” on an attribute, each
branch represents the outcome of the test, and each leaf node
represents a class label.

3) Random Forest (RF): A random forest comprises a large
number of independent DTs operating as a union. Each DT in
the RF outputs a categorical prediction, and the category with
the most votes becomes the overall model’s prediction.

4) k Nearest Neighbor (KNN): KNN is a classical classi-
fication algorithm, which is built on the assumption that sim-
ilar/neighboring data instances belong to the same category.
Other researchers’ prior studies show the feasibility to employ
KNN and its extensions for diabetes prediction [24].

5) Support Vector Machine (SVM): SVM is a supervised
ML algorithm. In SVM, data instances are projected onto a
higher dimensionality, wherein data instances belonging to two
classes can be relatively easily separated.

6) Long Short-Term Memory (LSTM): The LSTM archi-
tecture, which is an extension of the classical recurrent neural
network (RNN). In [25], LSTM was employed to enhance
patient health status prediction, especially diabetes prediction.

7) Gated Recurrent Unit (GRU): GRU could be considered
as a variation of LSTM. GRU uses two types of gates, namely
update gates and reset gates, to model the long-term and short-
term memory, respectively. Because GRU has no extra mem-
ory cell to store information, it can only control information
within the unit. GRU has been shown to outperform classical
ML approaches on DM diagnosis [26].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present and discuss the extensive experi-
mental results including MVs analysis, and prediction perfor-
mance of various combinations of data imputation methods
and ML/DL models.

A. Missing Value Analysis

As discussed in Section III-C, 166,985 data samples are
extracted and used for a binary classification task among which
86,106 are pre-DM and 80,879 are Type-2 DM records. How-
ever, laboratory tests and physical examinations are considered
to be valid only if they were performed close to the diagnosis
date to ensure data validity. As a result, there are a large
number of data samples with MVs in CDMS. Before applying
data imputation methods to CDMS, we conduct MVs analysis
to better understand the data samples having MVs.

In CDMS, the missing percentage is significantly high
especially for certain DM-related laboratory test results. To
gain a better insight, we split data samples of pre-DM and DM,
and show the missing percentage of all attributes having MVs
in Table V. We find that although HbA1c seems to be a routine

TABLE V
PREVALENCE OF MVS IN THE EXTRACTED CDMS DATASET

Index Attribute pre-DM DM

Missing% Missing%
in ERs Missing% Missing%

in ERs

1 OGTT2hr 80.20 61.74 94.57 51.01
2 FPG 48.17 31.54 89.96 27.75
3 LDLc 53.78 51.34 55.38 53.68
4 HDLc 53.54 50.91 55.06 53.11
7 HbA1c 92.67 92.19 15.69 24.79
5 TC 53.51 50.90 55.05 53.09
6 TG 53.52 50.90 55.05 53.09
8 Weight 20.90 22.29 22.44 17.86
9 BMI 20.90 22.28 22.43 17.84

10 SBP 5.03 7.40 3.97 5.20
11 DBP 5.03 7.40 3.98 5.20

ERs: Earliest (diagnostic) records

examination for DM patients (only 15.69% missing among
all hospital visits), while clinicians diagnose pre-DM (92.67%
missing) without this test. It is curious to us that OGTT2hr,
as a blood test frequently used to screen diabetes patients,
has a quite high missing percentage in both pre-DM and DM
samples (80.20% and 94.57%, respectively). It seems that DM-
related laboratory tests, such as OGTT2hr and FPG, are not
routine medical tests even for DM patients, not to mention
patients with pre-DM. Moreover, over half of the laboratory
test results and less than half of physical examination are
missing in CDMS.

DM patients could visit a doctor due to various reasons,
including but not limited to DM, which could partially ex-
plain the overall high missing percentage. Normally, a patient
diagnosed with DM for the first time based on the relevant lab-
oratory tests, i.e., the earliest records (ERs) of DM diagnosis,
is more likely to include those relevant laboratory tests and
physical examinations. In order to ensure the data integrity,
we only take the ERs of 21,615 pre-DM samples and 7,947
DM samples. The missing percentage of all records and ERs
are given in Table V. It is obvious that there are considerable
falls in the missing percentage of OGTT2hr and FPG in ERs.
However, the high proportion of MVs in HbA1c still stands as
a non-negligible problem (see Section IV-B2).

B. Data Imputation and Classification

It is evident that as a large-scale real-world medical dataset,
there are serious data missing issues in CDMS. As shown in
Table V, all the attributes with MVs are numerical. Hence,
we only present and discuss data imputation methods for nu-
merical MVs in our study. Furthermore, we conduct extensive
experiments using the data imputation methods introduced in
Section III-C4 and ML/DL models introduced in Section III-D.
The model implementation details are described as follows.

1) Case Deletion: If we remove all the data samples having
MVs in CDMS, due to the high prevalence of MVs, we will
end up with insufficient data to train any ML/DL model.
Therefore, we do not investigate the performance of case
deletion in our subsequent experiments.



TABLE VI
RESULTS WITH MULTIPLE DATA IMPUTATION METHODS (NO HbA1c)

Model Accuracy Precision Recall F1-score

ZI

LR 0.756 0.826 0.120 0.209
DT 0.783 0.599 0.587 0.593
RF 0.850 0.792 0.597 0.681

KNN 0.760 0.602 0.321 0.419
SVM 0.814 0.875 0.359 0.509
LSTM 0.748 0.853 0.075 0.138
GRU 0.757 0.794 0.128 0.221
Mean 0.781 0.763 0.312 0.396

CMC

LR 0.825 0.824 0.442 0.575
DT 0.778 0.585 0.597 0.591
RF 0.842 0.772 0.587 0.667

KNN 0.772 0.644 0.338 0.444
SVM 0.824 0.826 0.437 0.572
LSTM 0.821 0.813 0.432 0.564
GRU 0.828 0.805 0.474 0.597
Mean 0.813 0.753 0.472 0.573

KNNI

LR 0.841 0.851 0.491 0.625
DT 0.826 0.769 0.506 0.610
RF 0.854 0.832 0.574 0.680

KNN 0.786 0.694 0.365 0.479
SVM 0.845 0.844 0.521 0.645
LSTM 0.839 0.851 0.488 0.620
GRU 0.849 0.833 0.548 0.661
Mean 0.834 0.811 0.499 0.617

MICE

LR 0.806 0.734 0.439 0.550
DT 0.756 0.543 0.598 0.569
RF 0.832 0.715 0.623 0.666

KNN 0.767 0.628 0.325 0.428
SVM 0.817 0.749 0.481 0.586
LSTM 0.796 0.725 0.386 0.504
GRU 0.812 0.733 0.471 0.574
Mean 0.798 0.690 0.475 0.554

DataWig

LR 0.826 0.788 0.480 0.597
DT 0.792 0.611 0.620 0.615
RF 0.848 0.708 0.737 0.722

KNN 0.787 0.682 0.391 0.497
SVM 0.840 0.735 0.632 0.679
LSTM 0.797 0.847 0.332 0.477
GRU 0.797 0.847 0.332 0.477
Mean 0.812 0.745 0.503 0.581

2) ZI: We insert zeroes to all MVs in CDMS, and then
use the zero-imputed data samples for diabetes prediction.
Intriguingly, we find that almost every model could achieve a
quite high accuracy on the binary classification task. The key
reason is due to the high proportion and notable imbalance of
MVs. As shown in Table V, there are notably a large number
of MVs among all the presented attributes, especially for
the DM-related laboratory test results. Moreover, the missing
percentage of HbA1c is extremely high and imbalanced in pre-
DM and DM categories (92.19% and 24.79%, respectively).
If we impute zeroes to MVs in HbA1c, the predictive model
will be trained erroneously, i.e., it could simply classify data
samples with zeroes in HbA1c as pre-DM, which would result
in a high classification accuracy. As such, we remove the
HbA1c attribute in all the subsequent experiments because
imputing zeroes implicitly reveals label information to data
samples with fairly imbalanced MVs.

As shown in Table VI, ZI achieves acceptable performance
on accuracy and precision, but its recall is relatively low
among all imputation methods, especially for LR (0.120) and
LSTM (0.075). Similar to ZI, we also conduct experiments
on imputing constant values to MVs. As shown in Fig. 2,
imputing MVs using 5 or 10 considerably improves the recall

Fig. 2. Results of constant imputation using GRU.

and F1-score, while the performance is worse when using 15
or 20. Imputing MVs using constant values seems feasible,
but it remains as an open problem on how to determine the
optimal value for imputation, which we leave for future work.

3) CMC: In our study, according to the data distribution
presented in Section III-B, we select Gender, Age and Ethnic-
ity as the common concepts used for data imputation. Although
CMC is straightforward and easy to implement, it achieves
quite good performance on all predictive models. As shown
in Table VI, most models can achieve the accuracy of around
0.8 using CMC. Compared with other imputation methods,
CMC achieves the competitive performance on Precisoin and
Recall partially because the CDMS dataset is large in size,
which makes CMC relatively robust by having more reference
values from the same concepts.

4) KNNI: As shown in Table V, over half of the attributes
have MVs in CDMS. Therefore, we employ KNNI over those
attributes without MVs. Specifically, we adopt the Euclidean
distance metric (see (1)) in our study. As shown in Table VI,
KNNI outperforms the other imputation methods. In terms
of accuracy, KNNI obtains competitive performance (0.834
on average), which is better than that of the other four
imputation methods. KNNI also outperforms all the other
imputation methods on precision, recall and F1-score. It is
worth mentioning that, k, as the only hyper-parameter of
this algorithm, is set to 100 in our experiments. As shown
in Table VII, the prediction performance is not sensitive to
different values of k.

5) MICE & DataWig: MICE imputes MVs repeatedly con-
sidering statistical uncertainty in multiple imputations while
DataWig trains neural networks over the data. Therefore, these
two imputation methods require more expensive computations,
especially for large-scale datasets like CDMS. In spite of this,
these two methods obtain inferior performance. For MICE
and DataWig, the accuracy mostly lies between 0.7∼0.8 and
recall lies between 0.3∼0.6. In terms of precision, the overall
performance of these two methods (around 0.7∼0.75) is worse
than KNNI (over 0.8 on average) as well.

In summary, KNNI achieves the best prediction performance
among all imputation methods for our CDMS dataset, while
CMC achieves decent performance. Despite the relatively high
computation cost, MICE and DataWig obtain inferior results
comparing with KNNI and CMC. ZI is shown as not suitable



TABLE VII
RESULTS WITH DIFFERENT k VALUES IN KNNI USING LR

k Accuracy Precision Recall F1-score

50 0.819 0.796 0.439 0.566
100 0.825 0.824 0.442 0.575
500 0.834 0.866 0.425 0.594

1000 0.832 0.860 0.449 0.589

for data imputation in CDMS due to the imbalance distribution
of MVs between pre-DM and DM samples.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce a large-scale diabetes-related
dataset CDMS, which was collected in Singapore from 2010
to 2017. The large proportion of missing values caused by
irregular and distinct clinic visits poses a great challenge to
machine learning models. Hence, we conduct extensive inves-
tigations on the missing value problem and analyze multiple
data imputation techniques. The experimental results show that
KNNI is capable of handling MVs in CDMS and predictive
models using KNNI achieve the best performance on the task
of classifying pre-DM and DM patients.

In this study, the advantages of the multiracial nature of
CDMS are not well exploited. Going forward, we plan to
investigate the complex intrinsic relationships among various
ethnicities in diabetes-related tasks.
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